У квітні ми відзначаємо багато ювілейних дат, зокрема 310 років з дня народження Леонарда Ейлера та 240 років з дня народження Карла Фрідріха Гауса.

Леонард Ейлер (15 квітня 1707, Базель, Швейцарія — 7 (18) вересня 1783, Санкт-Петербург, Російська імперія) — швейцарський, російський і німецький математик та фізик, який провів більшу частину свого життя в Росії та Німеччині. Традиційне написання «Ейлер» походить від рос. Леонард Эйлер.

Ейлер здійснив важливі відкриття в таких різних галузях математики, як математичний аналіз та теорія графів. Він також ввів велику частину сучасної математичної термінології і позначень, зокрема у математичному аналізі, як, наприклад, поняття математичної функції. Ейлер відомий також завдяки своїм роботам в механіці, динаміці рідини, оптиці та астрономії, інших прикладних науках.

Ейлер вважається найвидатнішим математиком 18-го століття, а, можливо, навіть усіх часів. Він також є одним з найбільш плідних — збірка всіх його творів зайняла б 60—80 томів. Вплив Ейлера на математику описує висловлювання «Читайте Ейлера, читайте Ейлера, він є метром усіх нас», яке приписується Лапласові.

Йоганн Карл Фрідріх Гаус (30 квітня 1777, Брауншвейг — 23 лютого 1855, Геттінген) — німецький математик, астроном, геодезист та фізик.

Характерними рисами досліджень Гауса є надзвичайна їх різнобічність і органічний зв'язок у них між теоретичною і прикладною математикою. Праці Гауса мали великий вплив на весь дальший розвиток вищої алгебри, теорії чисел, диференціальної геометрії, класичної теорії електрики і магнетизму, геодезії, теоретичної астрономії. У багатьох галузях математики Гаус активно сприяв підвищенню вимог до логічної чіткості доведень. «Арифметичні дослідження» — перший великий твір Гауса, присвячений окремим питанням теорії чисел і вищої алгебри. Постановка і розробка цих питань Гаусом визначили дальший розвиток цих дисциплін. Гаус докладно розвинув тут теорію квадратичних лишків, уперше довів квадратичний закон взаємності — одну з центральних теорем теорії чисел. У цьому творі він по новому докладно розробив теорію квадратичних форм, яку раніше побудував Лагранж, виклав теорію поділу кола, яка багато в чому була прообразом теорії Галуа. Гаус розробив загальні методи розв'язання рівнянь виду хn−1=0, а також встановив зв'язок між цими рівняннями і побудовою правильних багатокутників, а саме: знайшов усі такі значення n, для яких. правильний n-кутник можна побудувати циркулем і лінійкою, зокрема розв'язав у радикалах рівняння х17−1=0 і побудував правильний 17-кутник за допомогою циркуля і лінійки. Це було першим після старогрецьких геометрів значним кроком уперед у цьому питанні. Одночасно Гаус склав величезні таблиці простих чисел, квадратичних лишків і нелишків, значень усіх дробів виду від р = 1 до р = 1000 у вигляді десяткових дробів, доводячи обчислення до повного періоду (що іноді потребувало обчислення кількох сотень десяткових знаків).

К. Гаус довів, що за допомогою циркуля та лінійки можна побудувати такий правильний n-кутник. Побудови трикутника і п'ятикутника були відомі ще давнім грекам, але Гаус першим здійснив побудову правильного 17-кутника.

Дослідження Гауса про поділ кола мали велике значення не лише для розв'язання цієї складної задачі. Мабуть, ще важливішим було те, що тут він заклав основи загальної теорії так званих алгебраїчних рівнянь, де коефіцієнти рівняння — комплексні числа.

Запрошуємо до читальної зали №3 переглянути книжкову виставку "Ювілейні дати квітня".


 

Вітаємо!

Будемо раді Вам допомогти.